

END-OF-YEAR HOLIDAY ASSIGNMENT

Science (Chemistry) SEC 3E/NA

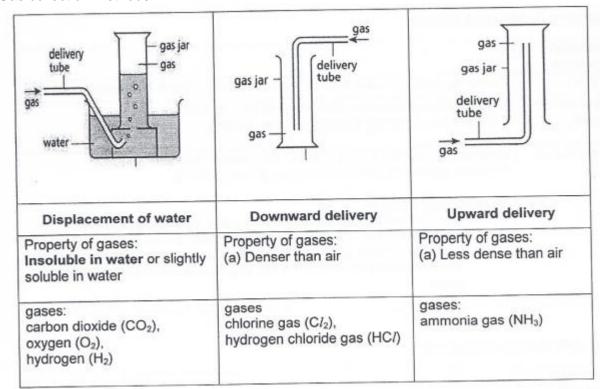
NAME: (, .) CLASS:
		<i>)</i> CLA33

This is a revision of lower secondary science and preparation for Sec 3 Chemistry. Place a tick in the table when you complete the sections.

- Read chapters 1, 2 and 5 of the Chemistry textbook
- Complete SLS lessons (by 15 Dec)
- Complete worksheets

	Chapter	Textbook chapter	SLS lessons	Worksheets	Mark
1	Experimental Chemistryapparatus and gas collection				/15
	 separation and purification techniques 				/20
2	The Particulate Nature of Matter • Kinetic Particle Theory				/15
5	Elements, Compounds and Mixtures				/20

CHAPTER 1: EXPERIMENTAL CHEMISTRY


APPARATUS & GAS COLLECTION

- (a) name appropriate apparatus for the measurement of time, temperature, mass and volume; including burettes, pipettes, measuring cylinders and gas syringes
- (b) suggest suitable apparatus, given relevant information, for a variety of simple experiments, including collection of gases and measurement of rates of reaction

Apparatus for measurement

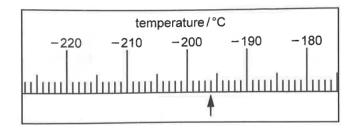
physical quantities	name and symbol of SI unit	other units	apparatus used
mass	kilogram(kg)	gram(g)	electronic balance
time	second(s)	minute(min)	stopwatch
temperature	Kelvin(K)	degree Celsius(°C)	thermometer
			volume of liquids 1. measuring cylinder measures to the nearest 0.5 cm³ e.g. 12.0 cm³, 50.5 cm³ 2. pipette accurately measures out fixed volumes of liquids e.g. 20.0 cm³ or 25.0 cm³
volume	cubic metre (m³)	cubic centimetre (cm³) milli-litre (ml) litre (l)	3. burette accurately measures out volume of liquid to nearest 0.05 cm³ e.g. 24.00 cm³, 12.45 cm³, 34.10 cm³
			** Beaker is only used to measure approximate volumes of liquids or for boiling of liquids.** e.g. approximately 100 cm³, 200 cm³, 250 cm³ volume of gases gas syringe

Gas collection methods

Complete the questions below.

2

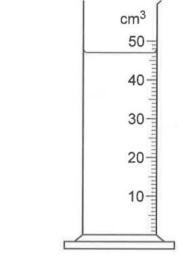
water


1 Name the apparatus that is suitable for:

(a) collecting 50.0 cm ³ of oxygen gas	[1]
(b) measuring out 25.0 cm ³ of sulfuric acid	[1]
(c) measuring accurately 32.50 cm ³ of sodium hydroxide	[1]
(d) clamping a burette	[1]
(e) measuring 3.50 g of copper(II) sulfate crystals	[1]
(f) measuring the time it takes for a reaction to complete	[1]
Name three key apparatus required for dissolving 5 g of sodium chlorid	e in 100 cm ³ of

[3]

°C


3 Temperatures below zero can be measured using a thermometer. Part of the thermometer scale is shown below.

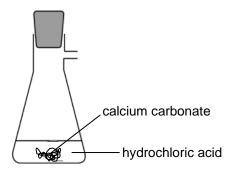
Record the reading shown by the arrow.

[1]

4 What is the volume of liquid shown in the measuring cylinder?

Volume = _____ cm³

[1]


5 The method of collecting a gas depends on the physical properties of the gas. State these two properties.

1.

2.

[2]

6 Carbon dioxide is given off when calcium carbonate reacts with hydrochloric acid. Complete and label the diagram below to show how the volume of carbon dioxide produced can be collected and measured.

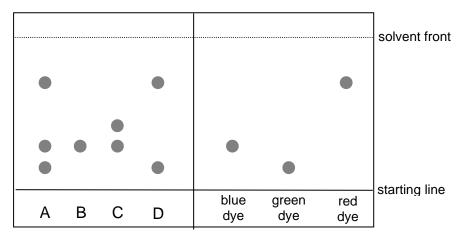
[2]

SEPARATION & PURIFICATION TECHNIQUES

- (a) describe methods of separation and purification for the components of mixtures, to include:
 - (i) use of a suitable solvent, filtration and crystallisation or evaporation
 - (ii) distillation and fractional distillation
 - (iii) paper chromatography
- (b) suggest suitable separation and purification methods, given information about the substances involved in the following types of mixtures:
 - (i) solid-solid
 - (ii) solid-liquid
 - (iii) liquid-liquid (miscible)
- (c) interpret paper chromatograms including comparison with 'known' samples
- (d) deduce from given melting point and boiling point data the identities of substances and their purity

Complete the table below by filling in the blanks.

No	Term	Definition						
1.	Pure substance	is made up of one single element or compound and not mixed with other substances. Pure substances have f melting and boiling points. Impurities will I the melting point of a substance and raise its b point. There will be a range of temperatures at which it melts or boils.						
2.	Mixture	is made up of two or more substances that are not c						
3.		is used to separate insoluble solid particles (residue) from a liquid (filtrate). mixture of solid and liquid filter funnel filter paper						
4.	Evaporation to dryness	is used to obtain a soluble solid (residue) from a solution by heating the solution until all the water has boiled off. The soluble solid must not d upon strong heating.						
5.		is the substance that is dissolved in a solvent to form a solution.						
6.		is the liquid that dissolves the solute to form a solution.						


7.	Crystallisation	is used for obtaining a pure solid sample from its saturated solution. This is the method to use when substances can decompose on heating. Steps for crystallisation: 1. Heat solution to s 2. C solution to allow for crystals to form 3. F to collect crystals 4. Wash crystals with a small volume of cold d water 5. Dry crystals between pieces of filter paper
8.	Saturated solution	refers to the solution whereby no more additional solid can be dissolved in the solution.
9.	distillation	 is used to separate a pure liquid (distillate) from a solution. The liquid with the lower boiling point will distil out first The bulb of the thermometer must be placed at the entrance of the condenser to provide the most accurate temperature of the gaseous substance that will be condensed and distilled out Boiling chips smoothen out the boiling Cold water enters from bottom leave at top to ensure that all vapour is condensed. (maximize the cooling effect)
10.	distillation	is used to separate a mixture of miscible liquids with different b
11.		is the method of separating two or more components that have different s in the same solvent. This method can also be used to identify the presence or absence of substances. More soluble substances will travel f away from the start line.
12.	Chromatogram	is the chromatography paper with the separated components.

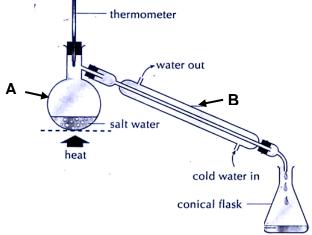
Complete the questions below.

1	State the	most suitable	e method fo	or the follo	wing processes	s:
---	-----------	---------------	-------------	--------------	----------------	----

(a)	to obtain pure	water from soft drinks	[-	11
١	\sim	to obtain paro	water from oon animo		• т

The diagram below shows a chromatography obtained using solutions of three single dyes (blue, green and red) and four other solutions (**A**, **B**, **C** and **D**).

(a) Which solution(s) A, B, C or D


- (i) is a pure substance? _____[1]
- (ii) contains green and red dyes only? _____[1]
- (iii) contains a dye other than blue, green and red dyes? _____[1]
- (b) Which dye (blue, green or red) is the most soluble in water? Explain.

[2]

(c) Explain why the start line should be drawn with a pencil.

[1]

3 The diagram below shows apparatus that is used to obtain pure water from sea water.

(a) Name the state change that is taking place in A .	
	[1]
(b) What is the purpose of apparatus B ?	
	[1]
(c) What temperature does the thermometer show when water is being distilled ou	ut? [1]
(d) Briefly describe how you could find out whether the water collected in the conic flask is pure.	cal
	[1]
Glauber's Salt is a white solid that is soluble in water. It is found in the ground mix with sand. Describe how you would obtain pure and dry crystals of Glauber's Salt from this mixture. (Hint: There are 7 key steps.)	
	[5]

Chapter 2: Kinetic Particle Theory

(a) describe the solid, liquid and gaseous states of matter and explain their interconversion in terms of the kinetic particle theory and of the energy changes involved

Complete the table below by filling in the blanks.

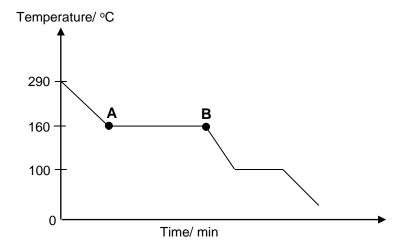
No	Term	Definition
1	Kinetic particle theory	It states that all matter is made up of tiny particles and that these particles are in constant random motion.
2		A process by which a solid takes in heat to change to a liquid. Melting point is the temperature at which a solid becomes a liquid.
3		A process by which a liquid gives out heat to change to a solid. Freezing point is the temperature at which a liquid becomes a solid.
4		A process by which a liquid takes in heat to change to a gas. Boiling point is the temperature at which a liquid becomes a gas.
5		A process by which a liquid takes in heat to change to a gas at temperature below boiling point at the surface of the liquid.
6		A process by which a gas gives out heat to change its physical state to a liquid.

During a change in state, the to	emperature remains constant.	
 During melting and 	boiling, energy is taken in by the particles to o	
the forces of a	between particles.	

-	During free	zing	and	condensation,	energy	is	given	out	as	the	particles	are
	attracted to	_			0,		Ū				•	

Complete the table about the three states of matter.

	Solid	Liquid	Gas
Shape, Volume, Compressibility	Fixed shape, fixed volume, cannot be compressed	No fixed shape, fixed volume, cannot be compressed	No fixed shape, no fixed volume, can be compressed
Draw a diagram to show the arrangement of particles			
Forces of attraction			
Arrangement			
Motion of particles			
Energy (kinetic) of particles	Very low	Low	High


Complete the questions below.

1 The boiling and melting points of the four substances are given in the table below.

substance	melting point / °C	boiling point / °C	physical state at 20 °C	physical state at -100 °C
ethane	-183	-89		
nitrogen	-210	-196		gas
iodine	114	184	solid	
titanium	1941	3287		

,	a) Complete the table by stating the physica	al states of each substance at 20 °C and	[3]
(I	o) Which substance exists in the liquid state	e over the largest range of temperature?	[1]
	Sodium metal has a melting point of 371 °C eated from room temperature to 235 °C.	and boiling point of 883 °C. It is being	
(a	a) What is the physical state of sodium meta	al at 235 °C?	[1]
(1	o) Draw the arrangement of the particles of	sodium at	
	(i) room temperature	(ii) 890 °C	
			[2]
	Precious metal, gold, has a melting point of	• .	
•	a) The physical state of gold at room tempe		[1]
	o) Gold will in a physical state of		[1]
((c) Describe the arrangement and arrangem	ent of gold particles at 100 °C.	
			[2]

4 Look at this cooling curve for substance X.

- (a) Name the process happening at point **A** to **B**. _____[1]
- (b) Name the states of matter present at point A to B. _____[1]
- (c) Describe the changes in arrangement and movement of particles in **X** when freezing occurs.

[2]

CHAPTER 5: ELEMENTS, COMPOUNDS & MIXTURES

- (a) describe the differences between elements, compounds and mixtures
- (b) describe the general physical properties of metals as solids having high melting and boiling points, malleable and good conductors of heat and electricity
- (c) describe an alloy as a mixture of a metal with another element, e.g. brass; stainless steel
- (d) identify representations of metals and alloys from diagrams of structures

Complete the table below by filling in the blanks.

No	Term	Definition		
INO	I CIIII	Denniuon		
1		is a pure substance that cannot be broken down into two or		
		more simpler substances by chemical processes.		
2		are the smallest particles of an element that have the chemical		
_		properties of that element.		
3		is a group of two or more atoms that are chemically joined		
		together.		
4		is a pure substance containing two or more elements that are		
-		chemically combined in a fixed ratio.		
5		is made up of two or more substances that are not chemically		
combined.		combined.		
		It is a m of a metal with one or a few other elements.		
6		Atoms of pure metal Atom of foreign element added		

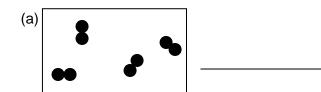
Differences between a compound and a mixture:

compound	mixture
can be separated into its constituents by	can be separated into its constituents by
from its constituents	as its constituents
usually there is energy change	usually no energy change
constituents are combined in a	constituents are combined in
	can be separated into its constituents by from its constituents usually there is energy change

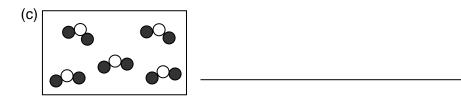
[2]

Complete the questions below.

1 Circle the molecule that contains more atoms.


- (a) HCl or POBr(b) C_3H_8 or C_2H_5OH
- (c) CH_3COOH or C_6H_6

2 Circle the molecule that contains more types of elements.


- (a) HCl or POBr
- (b) C_3H_8 or C_2H_5OH
- (c) CH_3COOH or C_6H_6 [2]

Identify the description that best represents each diagram and write the correct description in the corresponding blank.

Αı	mixture of compounds	An element	A mixture of elements
A	compound made up of two atoms	A compound made up of three atoms	

[5]

PASIR RIS CREST SEC SCHOOL

4	Classity the following as elements, compounds or mixtures.	
	(a) air	
	(b) iodine	
	(c) sodium	
	(d) brass	
	(e) water	
	(f) ammonia	
	(g) sodium chloride	
	(h) steel	
		[8]
		[0]
5	Draw a diagram representation of nitrogen (N_2) gas. (use \bigcirc to represent nitrogen atoms)	
		[1]
6	Draw a diagram representation of carbon dioxide (CO₂) gas. (use ○to represent carbon atoms and ● to represent oxygen atoms)	
	(dae Cto represent danson atoms and Cto represent exygen atoms)	
		[1]
7	Draw a diagram representation of a mixture of oblering (CL) and believe (He) and	
7	Draw a diagram representation of a mixture of chlorine (Cl_2) and helium (He) gas. (use \bigcirc to represent chlorine atoms and \blacksquare to represent helium atoms)	
		[1]
		ניו